nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, No.207 1-7+81
基于熔盐储热的供热火电机组灵活性改造研究
基金项目(Foundation): 中国电建集团福建省电力勘测设计院有限公司科技项目(35-KBYZ1-2023-007)
邮箱(Email):
DOI: 10.13500/j.dlkcsj.issn1671-9913.2025.05.001
摘要:

文章首先构建了火电机组物理模型,并以300 MW机组THA、75%THA和50%THA工况的设计值与模型计算值进行对比,验证模型的准确性。然后以三元熔盐作为储热熔盐,经过多种储热及释热组合工况的比选,以抽主蒸汽、疏水加热凝结水作为储热过程的优选工况,熔盐加热产生供热蒸汽作为释热过程的优选工况。最后以亚临界300 MW一次再热的供热机组为例,进行熔盐储热系统的方案设计以及技术经济评价。结果表明,按照福建省调峰辅助服务规则,在平均负荷率为50%,平均调峰补偿价格0.2元/kWh的情况下,熔盐储热系统的总投资约为3 870万元,静态投资回收年限约为21.2 a。

Abstract:

This paper firstly constructs a physical model of thermal power generation units, and compares the calculated data of the model with the design data of THA, 75% THA, and 50% THA operating condition of 300MW units to verify the accuracy of the model. Then, the ternary molten salt is used as the heat storage molten salt. After comparing multiple combined conditions of heat storage and release, the optimal working condition of the heat storage process is to extract the main steam and heating the condensate, and the optimal working condition of the heat release process is to directly produce steam by molten salt. Finally, taking the subcritical 300 MW reheating heating unit as an example, the scheme design and technical and economic evaluation of the molten salt heat storage system are carried out. The results showed that according to the peak shaving auxiliary service rules of Fujian Province, with an average load rate of 50% and an average peak shaving compensation price of 0.2 yuan/kWh, the total investment of the molten salt heat storage system is about 38.7 million yuan, and the static investment recovery period is about 21.2 years.

参考文献

[1]国家统计局.中华人民共和国2023年国民经济和社会发展统计公报[EB/OL].(2024-2-29)[2024-3-18]. https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html.

[2]张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158.

[3]李艺,张琳.能源转型背景下传统能源与新能源发展的思考[J].电力勘测设计,2020(4):66-71.

[4]肖定垚,王承民,曾平良,等.电力系统灵活性及其评价综述[J].电网技术,2014,38(6):1569-1576.

[5]曾光,纪阳,符津铭,等.热储能技术研究现状、热点趋势与应用进展[J].中国电机工程学报,2023,43(增刊1):127-142.

[6]周信华,郑祯晨,胡远庆.抽汽熔盐蓄热技术在煤电灵活性改造中的应用研究[J].科学技术创新,2023(22):53-56.

[7]王坚,王辉.火电厂抽汽储能深度调峰技术研究[J].电力勘测设计,2022(6):30-34.

[8]贺建平,高琨,袁晋雄,等.火电机组深度调峰综合经济性分析[J].机电信息,2023(10):14-17.

[9]马汀山,王伟,王东晔,等.基于熔盐储热辅助煤电机组深度调峰的系统设计及容量计算方法研究[J].热力发电,2023,52(7):113-118.

[10]贾振国,王顺,管洪军,等.耦合熔盐储热系统的火电机组调峰性能与热经济性研究[J].热力发电,2024,53(10):72-80.

[11]张钟平,刘亨,谢玉荣,等.熔盐储热技术的应用现状与研究进展[J].综合智慧能源,2023,45(9):40-47.

[12]张延伍,史纯子,毛大成,等.煤电机组灵活性改造典型方案经济性分析研究[J].电力勘测设计,2023(4):57-63.

[13] MURAT M. K. High-Temperature Phase Change M a t e r i a l s f o r T h e r m a l E n e rg y S t o r a g e[J].Renewable and Sustainable Energy Reviews, 2009,14(3):955–970.

基本信息:

DOI:10.13500/j.dlkcsj.issn1671-9913.2025.05.001

中图分类号:TM621;TK11

引用信息:

[1]施承斌,张朋,汪枫等.基于熔盐储热的供热火电机组灵活性改造研究[J].电力勘测设计,2025,No.207(05):1-7+81.DOI:10.13500/j.dlkcsj.issn1671-9913.2025.05.001.

基金信息:

中国电建集团福建省电力勘测设计院有限公司科技项目(35-KBYZ1-2023-007)

检 索 高级检索